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We demonstrate that photonic superlattices consisting of a periodic distribution of layers of materials with
positive index of refraction and photonic crystal slabs that, at the operating frequency, have negative effective
index of refraction present a photonic gap that corresponds to the frequency at which the spatial average of the
refractive index distribution, taken over the unit supercell of the superlattice, vanishes. We also show that,
unlike the Bragg gaps, the frequency of this zero-n gap is invariant to the geometrical scaling of the superlat-
tice or the direction of wave propagation in the superlattice. © 2006 Optical Society of America
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1. INTRODUCTION

Left-handed metamaterials (LHMs) are newly discovered
artificial composites,’™ which have attracted much inter-
est over the past few years. Their main physical property
is that both the electric permittivity e and the magnetic
permeability u are negative; as a result, they also have a
negative index of refraction. Although the main electro-
magnetic properties of a medium with such characteris-
tics have been theoretically investigated more than three
decades ago,* the lack of naturally occurring media with
simultaneously negative € and x has made it impossible
to experimentally verify the striking predictions of this
theoretical study. However, it has been recently demon-
strated that it is possible to achieve both negative € and
M, within a certain frequency domain, if metallic periodi-
cally structured composites are used. Thus, it has been
shown that a network of thin metallic wires behaves as a
quasi medium with negative €>°® whereas a lattice of me-
tallic split-ring resonators has a negative ,u.7 Combining
these two structures leads to a LHM.™ Alternative de-
signs of the metal-based LHM have been proposed and re-
cently demonstrated.®®

The rapidly growing interest in LHMs stems from their
unusual physical properties, such as superlensing,lo_12 an
inverse Snell’s law,* or an inverse Doppler effect,” as well
as from their potential use in new technological applica-
tions. In addition, metal-based LHMs can operate not
only at microwave frequencies, as several studies have
initially demons‘crated,l_3 but, as recent theoretical®1?
and experimental9 investigations have shown, also at in-
frared and optical frequencies. A main drawback of using
metal-based LHMs for optical devices is their large losses,
which are mainly due to the optical losses in their metal-
lic components. One way to overcome this limitation is to
use periodically structured dielectrics, namely, photonic
crystals (PCs). Thus, it has been recently
demonstrated'®!® that, within a certain frequency range,
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PCs behave like materials with negative index of refrac-
tion: the incident and transmitted waves lie on the same
side of the normal to the interface,w’”’z0 so that the effec-
tive index of refraction is negative; a slab of PC behaves
like a lens and produces a real image of a point source
placed in front of the slab?l; or the PC can be used to
achieve subwavelength resolution.?%?

In the case of a PC-based LHM, the background matrix
is usually made from a homogeneous nonmagnetic (u
=1) dielectric material. In this case, the property of nega-
tive effective index of refraction is a direct consequence of
the spatial periodicity of the dielectric function; i.e., it is
the effect of modified dispersive properties induced by
folding the photonic bands back into the first Brillouin
zone. Furthermore, alternating layers of homogeneous
LHMs and right-handed materials (RHMs), i.e., regular
dielectric materials with positive € and u, can be com-
bined in a periodic photonic superlattice that shows re-
markable optical properties.?#?® The presence of the LHM
component in these periodic structures leads to surprising
effects, such as the existence of an omnidirectional band-
gap that is insensitive to the wave polarization, angle of
incidence, or period of the structure,”® and unusual trans-
mission properties and beam reshaping.?”?® As has been
shown, the main reason for such remarkable properties is
the existence of a frequency at which the volume-
averaged refractive index vanishes?; therefore, the corre-
sponding bandgap is also called the zero-n gap. At this
frequency the periodic structure cannot support propagat-
ing modes, and, since the only condition for the existence
of such a gap is that the volume average of the refractive
index vanishes, n=0, its properties do not depend on the
scaling of the structure or the polarization of the incident
waves.

In previous studies it has been assumed that the LHM
slabs in the LHM-RHM-layered structures were made
from a homogeneous material, so that their electromag-
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netic properties were described by an effective electric
permittivity and an effective magnetic permeability. This
is a good approximation for metal-based LHMs, as the
wavelength at which these metamaterials have a nega-
tive index of refraction is much larger than the lattice
constant of their periodic structure. However, inasmuch
as metal-based LHMs can have large optical losses, it
would be difficult to use such metamaterials to demon-
strate experimentally the existence of the zero-in gap. We
demonstrate in this paper that, as an alternative to this
approach, zero-n gaps can be observed in binary PC su-
perlattices, in which one component of the unit supercell
is a PC with negative effective index of refraction. This is
a nontrivial result, as at the frequency at which the zero-
n gap is formed the corresponding wavelength is only a
few times larger than the periodicity of the PC, so that
the effective parameters of the crystal are not well de-
fined.

The paper is organized as follows. In Section 2 we de-
scribe the structure of our photonic superlattices. Then in
Section 3 we demonstrate that, by assembling in a peri-
odic superlattice layers of RHM and PC slabs with nega-
tive effective index of refraction, one obtains photonic
structures with new optical properties, namely, structures
with a zero-nz gap. In Section 4 we summarize our results.

2. DESCRIPTION OF THE PHOTONIC
SUPERLATTICE

The photonic structure we consider here consists of alter-
nating layers of materials with distinct optical properties,
periodically distributed along the longitudinal axis, z. In
what follows, we will consider three distinct cases,
namely, both layers are made from homogeneous materi-
als; one layer is made from a two-dimensional (2D) PC,
whereas the other is a homogeneous RHM; and, finally,
both layers are made from 2D PCs with different geo-
metrical parameters. For the 2D PC we consider a hex-
agonal lattice of air holes in a dielectric background (see
Fig. 1). The optical properties of the PC slab are fully de-
termined by the lattice constant a; the ratio r/a, where r
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Fig. 1. Schematic design of a binary PC superlattice. The pa-
rameters a;, and ry 5 are the lattice constants and the air-hole
radii, respectively, and the superlattice period is A=d;+d,. Also
shown are the first Brillouin zones of the hexagonal PC and the
PC superlattice.
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Fig. 2. PBS of the TM modes for an air-hole hexagonal PC with
parameter r/a=0.4 and the index of refraction of the dielectric
background n=3.6. The shadowed regions correspond to photonic
bandgaps.

is the radius of the air holes; and the refractive index n of
the dielectric background. Furthermore, the photonic su-
perlattice is periodic along the longitudinal direction,
with A=d;+dy as the corresponding spatial periodicity.
Here, d; and dy are the thicknesses of the two slabs con-
tained in the primary unit supercell. Note that the hex-
agonal PC and the photonic superlattice have different
symmetry properties, and therefore they also have differ-
ent first Brillouin zones? (see Fig. 1).

We assume that the wave vector of the plane wave in-
cident on the superlattice lies in the xz plane and that the
incident plane wave is either s polarized, with the electric
field along the y axis, or p polarized, with the magnetic
field oriented along the y axis. On the other hand, when
describing the modes that propagate inside the superlat-
tice we will follow the convention used in the PC-related
literature, namely, that the TM (TE) modes have the only
nonzero component of the electric (magnetic) field ori-
ented along the y axis.

For the 2D PC we consider a hexagonal lattice of air
holes in a dielectric background with index of refraction
n=3.6 and structural parameter r/a=0.4. In this geom-
etry, only the TM polarization provides a range of fre-
quencies in which only one photonic band exists, so that
phenomena such as multiple-beam excitation are greatly
reduced, and, more importantly, this band has a negative
effective index of refraction. In addition, this negative in-
dex of refraction is isotropic within a large frequency do-
main. Therefore, in our analysis we will consider only the
TM polarization. These dispersive properties of the pri-
mary PC structure are illustrated in Fig. 2, where the
photonic band structure (PBS) of the TM modes is shown.
Thus, at low frequencies (first photonic band) the mode
frequency increases almost linearly with the mode wave
vector, which is a consequence of the fact that at large
wavelengths the PC structure behaves like an effective
homogeneous medium. This description changes if we
consider the second band, which extends between ®
=0.23 and w=0.347, where w=wa/2mc=a/\ is the normal-
ized frequency. For this band the mode frequency de-
creases with the mode wave vector (anomalous disper-
sion), a property that leads to a negative effective index of
the photonic modes in this band.1%17

To illustrate this property, let us consider the wave re-
fraction at a RHM-PC interface, for wave frequencies
that belong to the second band, and compare it with the
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wave refraction at a RHM-RHM interface. These pro-
cesses are shown schematically in Fig. 3. Thus, in two di-
mensions, for an isotropic RHM the equifrequency surface
(EFS) w=w(k) is a circle, with the corresponding group
velocity vo=Viw(k) pointing outward and normal to the
EFS. In contrast, in the case of a PC, at a frequency in
which the dispersion is anomalous (e.g., second photonic
band in Fig. 2), the group velocity points inward but again
normal to the EFS. Now let us consider a plane wave that
propagates in a RHM and impinges at a certain angle on
a PC, as illustrated in Fig. 3, and let us assume that at
the frequency of the incoming plane wave the dispersion
of the PC is anomalous. Then the conservation of the com-
ponent of the wave vector that is parallel to the interface
determines two possible choices for the wave vector of the
transmitted wave [corresponding to the intersections be-
tween the vertical dashed line in Fig. 3(a) and the EFS].
Between these two choices, only one is physically accept-
able, namely, the one that ensures an energy flow from
the RHM into the LHM. Hence, to select the correct direc-
tion of propagation of the transmitted wave, we use the
property that in a PC the Poynting vector S is oriented
along the group Velocity,30 which, for a frequency in which
the dispersion is anomalous, is perpendicular to the EFS
and inwardly oriented. As a result, we observe that the re-
fraction at the interface is negative, the Poynting vector S
of the transmitted wave is opposite to its wave vector,
Sk, <0, and thus the effective index n (also called phase
index) defined by |k|=|n|w/c is negative. All these proper-
ties are defining characteristics of a LHM. In the case of
refraction at the interface between two RHMs, the group
velocity of the transmitted wave is along the wave vector
so that the incident and the transmitted waves are on the
opposite sides of the normal to the interface.

Inasmuch as we want to use a PC slab as the LHM
component in a photonic superlattice, we performed a
more detailed analysis of the dispersive properties of the
primary 2D PC structure, in the frequency range in which
its effective index of refraction is negative (the second
band in Fig. 2). In particular, we have numerically com-
puted the effective index of the second photonic band, for
all propagation wave vectors in the first Brilloin zone of
the 2D PC. The results of our calculations, summarized in
Fig. 4, show that at frequencies corresponding to this pho-
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Fig. 3. Schematic representation of wave refraction (a) at the
interface between a RHM and a LHM and (b) at the interface be-
tween two RHMs. The vertical dashed lines illustrate the conser-
vation of the wave vector parallel at the interface.
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Fig. 4. Effective index of refraction of the propagating modes
belonging to the second photonic band shown in Fig. 2. In the
right panel, the frequency dispersion of the effective index of re-
fraction of the modes whose wave vectors span the I'-M and
I'-K symmetry axes.

tonic band the wave propagation in the PC is nearly iso-
tropic, especially if the wave vectors of the Bloch modes
are close to the I' symmetry point. At these frequencies
the corresponding EFSs are slightly deformed circles,
whereas the EFSs that correspond to frequencies close to
the bottom of the band approach an hexagonal shape. For
example, for the direction of propagation along the I'-M
symmetry axis the effective index is n=-1 for ©=0.3,
whereas at the same frequency, but for the direction of
propagation along the I'-K symmetry axis, the effective
index is n=-1.022. In what follows, we will demonstrate
that, because of this near optical isotropy, a PC slab can
be used as one of the two components in a photonic binary
superlattice so as to create a zero-n gap.

3. ZERO-n GAP IN RHM-LHM PHOTONIC
SUPERLATTICES

In this section we will demonstrate that in a photonic su-
perlattice that contains as one of its components a PC
with negative effective index of refraction one can create a
photonic gap whose properties do not depend on the spa-
tial periodicity of the superlattice or the index of refrac-
tion of its components. In contrast with the Bragg gap,
this photonic gap is formed at a frequency at which the
spatial average of the effective index of refraction of the
superlattice vanishes. In addition, this gap is omnidirec-
tional, provided that at the corresponding frequency the
PC layers in the unit supercell are optically isotropic.

A. Superlattices of Homogeneous RHM and LHM

Layers

To begin with, let us briefly discuss the case in which both
layers in the unit supercell are made from homogeneous
materials. Here we restrict our discussion to the case of
dispersionless media and consider only periodic struc-
tures whose spatial average of the refractive index van-
ishes, that is (n)=(n1d;+nod9)/ A=0 (the general case has
been discussed in a recent study25). Thus, by assuming
that the electromagnetic field in the supercell is a Bloch
mode, i.e., F(z+A)=exp(ik,A)F(z), one can easily derive
the dispersion relation of the photonic modes®:
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1/py Do . .
cos(k,A) =cos B cos By — —| — + — |sin B; sin By, (1)
2\ps D1

where the Bloch wave vector &, belongs to the first Bril-
louin zone of the superlattice, —m/A<k,<au/A. In Eq. (1)
the parameters p;s depend on the polarization of the
Bloch mode and are given by

1/2 1/2

€1 €

pi1= (—) cos 0y, pa= (—) cos 0Oy (2)
M1 M2

for s-polarized waves and

PARL: g\ V2
pi1=|— cos 64, pa=|— cos Oy (3)

€1 €

for p-polarized waves, whereas the parameters ;o are
defined as

w —
B = Z\e"lebzdz cos f.  (4)

B1= - Verudy cos 6y,
Here, 6, 5 are the angles between the propagating waves
in the two media and the normal to the interface between
them. Since the tangent component %, of the wave vector
is the same in the two media, the angles 6; 5 are deter-
mined by the following expressions:

1 [he)\2]™
cos 6i={1——<—> ] (i=1,2). (5)

€14\ @

The dispersion properties of the superlattice are derived
from Eq. (1) as follows. If for a given frequency w and tan-
gent component %, of the wave vector the absolute value
of the right-hand side of Eq. (1) is less than 1, then there
is a real solution %, that satisfies this equation. Therefore,
at the frequency w there exists a propagating Bloch mode
with the wave vector k=(%,,k,). On the other hand, if the
absolute value of the right-hand side of Eq. (1) is larger
than 1, the corresponding solution %, has a nonzero imagi-
nary part, which means that the superlattice does not
support propagating Bloch modes.

We have used this procedure to calculate the PBS of a
RHM-LHM superlattice with material parameters e;
=4.8, u1=1, eg=-2.5, us=->5, and the thicknesses of the
two layers d;=fA and ds=(1-HA, with f=0.6174. We
choose the values of these parameters such that the aver-
age index of refraction of the superlattice (n)=(nid;
+n9dg)/ A=0. The results of these calculations are pre-
sented in Fig. 5, where both the projected as well as the
reduced band structures are shown. In both cases we con-
sidered s and p polarizations. For the sake of clarity, the
results are displayed in normalized units, namely, 0 —
=wA/2mc, k,— k,=k,A/2m, and k,— x,=k,A/27. These
figures illustrate several phenomena, which are specific to
RHM-LHM periodic structures. Thus, Fig. 5(a) shows
that for small values of the tangent component «, the
transmission through the superlattice is zero, except in
certain narrow transmission bands. At the frequencies of
these bands, determined by the Fabry—Perot resonance
condition®*
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Fig. 5. (a) Projected PBS (left, s polarization; right, p polariza-
tion) of a photonic superlattice with material parameters e
=4.8, u;=1, &=-2.5, uy=->5, and the thicknesses of the two lay-
ers di=fA and dy=(1-f)A, with f=0.6174. The black (bold) re-
gions correspond to transmission bands. Near «,=0, these bands
collapse to discrete states. (b), (c) The reduced PBS for s and p
polarizations, calculated for «,=1.2, respectively.

Bi=mm (m==x1,+2,%£3,...), (6)

the waves, reflected at consecutive interfaces, arrive out
of phase at the input facet of the superlattice. These
bands narrow as k, decreases, collapsing to discrete
states at «,=0. This behavior is quite different from that
of a RHM-RHM superlattice, in which case at «,=0 there
are a series of alternating transmission bands and Bragg
gaps, equally spaced in the normalized frequency w
space. Moreover, Fig. 5 shows that, although there is a
quantitative difference between the dispersion properties
of the s- and p-polarized waves, qualitatively they are
similar.

B. Superlattices of Homogeneous RHM and PC-Based
LHM Layers

We now turn our attention to a superlattice whose super-
cell is made from a PC slab, with the structural param-
eters described in Section 2, and a homogeneous RHM
slab. We consider the RHM to be dispersionless and
choose the frequency of the plane wave incident on the su-
perlattice such that the effective index of the PC is nega-
tive. Also, the orientation of the PC slab is chosen such
that the z axis coincides with the I'-M symmetry axis of
the crystal and the facets of the PC slab are planes that
contain the centers of the air holes. We will demonstrate
that under these conditions a zero-n gap opens at the fre-
quency at which the spatial average of the refraction in-
dex, (n), vanishes. Note that in this case the effective re-
fractive index of the PC depends on the frequency (see
Fig. 4), and, consequently, we expect that, unlike the case
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Fig. 6. Frequency dependence of transmission (upper panel)
and reflectance (lower panel), computed for three different super-
lattices. The dashed, dotted, and solid curves correspond, respec-
tively, to superlattices (i), (ii), and (iii) (see the text for the de-
scription of their structure).

of a RHM-LHM superlattice made from homogeneous
dispersionless media, the frequency width of the gap will
be finite.

To demonstrate the existence of the zero-n gap, we have
first examined the transmission and reflection properties
of a stack of PC and RHM layers. We varied both the re-
fractive index of the RHM slab as well as the thicknesses
of both layers. Thus, we considered three superlattices
whose unit supercells were defined as follows: (i) a PC
slab containing six unit cells along the z axis, so that the
thickness of the layer is d1=3\e“§a, and a RHM with dy
=d; and index of refraction ny=1, i.e., vacuum; (ii) a PC
slab containing eight unit cells along the z axis, so that
the thickness of the layer is d1=4\e“§a, and again a RHM
with dy=d; and index of refraction ny=1; and (iii) a PC
slab containing eight unit cells along the z axis, so that
the thickness of the layer is d1=4\s“§a, and a RHM with
the refraction index ny=2.2 and dy=d{/ny. With this
choice, in all three cases the spatial average of the refrac-
tive index vanishes at the frequency at which the effective
index of the PC slab is npgc=n;=-1, that is, for the nor-
malized frequency @=0.3. Finally, in all these three cases
we numerically calculated the transmission and reflection
at normal incidence, for TM wave polarization
(s-polarized incident wave), for a superlattice containing
eight supercells. For this, we used a numerical algorithm
that relates the transmission and reflection coefficients of
a periodic structure to the transfer matrix associated with
its unit cell, that is, the so-called transfer-matrix method
(TMM).?2** In all TMM calculations we used a 50X 350
computational grid. As the corresponding numerical
simulations are computationally demanding, we used a
parallel implementation of the TMM algorithm, which
was run on a computer cluster containing 18 Pentium 4
processors at 2.8 GHz.

Figure 6, which shows the frequency dependence of the
transmission and reflectance of all three superlattices, il-
lustrates the results of these numerical computations.
First, the transmission spectrum of the photonic struc-
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tures, computed for frequencies at which the PC has a
negative effective index of refraction (see Fig. 4), shows
several photonic gaps. In addition, one observes that the
corresponding mid-gap frequencies of all but one photonic
gap vary with the structural parameters of the superlat-
tice, which is the familiar behavior of the Bragg gaps.
However, the mid-gap frequency of the gap located near
the normalized frequency w=0.3, at which the condition
(n)=0 is satisfied, is nearly insensitive to changes in the
structure of the superlattice. This analysis proves that
one can use PCs as primary LHM building blocks to cre-
ate photonic structures with new properties.

As in the case of RHM-LHM superlattices made of ho-
mogeneous materials, it is possible to design a superlat-
tice with a PC-based LHM slab such that the zero-n gap
contains a narrow transmission band. This phenomenon
is illustrated in Fig. 7, where we show the frequency de-
pendence of transmission and reflectance of a superlattice
containing a PC slab with six unit cells along the z axis,
so that the thickness of the layer is d1=3\s“§a, and a RHM
with the refraction index n,=3.6 and thickness d,
=d/n,. As in the previous cases we observe a gap around
the frequency w=0.3, that is, the normalized frequency at
which (n)=0. However, inside this transmission gap we
see a sharp transmission resonance at the frequency
=0.302. At this frequency the effective index of refraction
of the PC, for propagation along the I'-M symmetry axis,
is n1=-0.96, so that the parameter 8;=4.027. This proves
that the transmission peak at ®=0.302 is the result of
resonant Fabry—Perot wave interaction.

We have also studied the dependence of the optical
properties of RHM—-LHM photonic superlattices on the di-
rection of the mode propagation inside the superlattice. In
particular, we examine whether the spectral properties of
the zero-n gap are preserved when the direction of the
mode propagation inside the superlattice changes. For
this, we have computed the PBS of three infinite super-
lattices with parameters d;=3v3a (six unit cells), ny=1,
and dy=d;/ns; d;=4\3a (eight unit cells), ny=1, and

0.5

transmission

0.5 |

reflectance

0 e 0 L "
024 026 028 03 032 034
normalized frequency [wa/2nc)

Fig. 7. Frequency dependence of transmission (upper panel)
and reflectance (lower panel) computed for a superlattice con-
taining a PC slab with six unit cells along the z axis, so that the
thickness of the layer is d;= 3\s‘§a, and a RHM with the refraction
index n,=3.6 and thickness dy=d;/n,. Note the narrow reso-
nance at @=0.302.
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Fig. 8. From the top to the bottom panels: the PBS of three in-
finite superlattices with parameters d;=33a (six unit cells), n,
=1, and dy=d,/ny; di=4\3a (eight unit cells), ny=1, and d
=d;/ny; and d1=3\s‘§a (six unit cells), ny=1.25, and dy=d;. The
shadowed regions correspond to photonic bandgaps.

dy=d1/ng; and d1=3\s“§a (six unit cells), ny=1.25, and d,
=d;. For these values of the parameters of the superlat-
tice (n)=0 at the frequency w=0.3 in the first two cases,
whereas in the last case (n)=0 at the frequency ®
=0.2864. The results of these calculations are presented
in Fig. 8. Note that in this figure the size of the Brillouin
zone along the I'-X; symmetry axis is compressed, as
compared with the I'-M distance shown in Fig. 2, which
is due to the increased size of the unit supercell along the
z axis. Also, note that there is a good agreement between
the position of the frequency gaps in Figs. 6 and 8 (top two
panels), which were computed by using two different nu-
merical methods, namely, the TMM and the plane-wave
expansion, respectively.

One remarkable finding illustrated in Fig. 8 is that the
zero-nn gap extends to all directions of propagation; i.e., it
is an omnidirectional gap. This property further illus-
trates that the origin of this gap is not in the band folding
of the photonic bands back into the first Brillouin zone, as
is the case with the familiar Bragg gaps. Also, notice that
for propagation directions that are off normal with re-
spect to the PC slabs the gap narrows, an effect that is
attributed to the anisotropy of the effective refractive in-
dex of the PC (see Fig. 4). Thus, for off-normal propaga-
tion the refractive index is slightly different from the re-
fractive index for which the condition (n)=0 is satisfied,
i.e., the effective index along the I'-X; symmetry axis, so
that the gap tends to close. Moreover, the PBS shown in
the bottom panel of Fig. 8 demonstrates that the fre-
quency of the zero-n gap can be tuned by one’s simply
varying the frequency at which the condition (n)=0 is sat-
isfied. Thus, by one’s choosing ny,=1.25 and keeping d,
=d;, the average index (n)=0 for ny=npg=-1.25, that is,
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at the frequency w=0.2864 (see Fig. 4). This value is con-
sistent with the frequency gap shown in the bottom panel
in Fig. 8, whose spectral domain extends between
=0.2859 and w=0.2894.

C. Superlattices of PC-Based RHM and LHM Layers

To conclude this section, we will show that a zero-n pho-
tonic gap can be produced by a superlattice in which both
components of the unit supercell are made from PC slabs.
For this, the geometrical parameters of the two PC do-
mains must be chosen such that at a certain frequency
one PC has a positive effective index of refraction,
whereas the effective index of the other one is negative. In
addition, at this frequency, the spatial average of these ef-
fective indices must be zero. In what follows, we will il-
lustrate these ideas by a specific example. Thus, let us
consider that the first PC in the supercell is described by
the parameters a;=a, r;/a;=0.4 and the background in-
dex n=3.6, i.e., the previously considered PC. As the sec-
ond component we consider a PC with parameters aq
=a1/2, rg/ay=0.5 and with the same background index
n=3.6. Finally, we choose the thicknesses of the two PC
slabs to be d;=33a; and dy=63as, i.e., di=ds. We
choose the PC slabs to be a few lattice constants thick,
that is, large enough for the photonic bands to form.

The PBS of the superlattice, computed for a frequency
domain in which the first PC component has negative ef-
fective index of refraction is presented in Fig. 9. Note that
the frequency in this figure is normalized by using the pa-
rameters of the first PC so that, by using the scaling prop-
erties of the frequencies of the Bloch modes in a PC, we
can see that these frequencies belong to the first band of
the second PC, that is, a band with positive effective in-
dex of refraction. Furthermore, we have numerically cal-
culated the effective index of refraction of this first band,;
these calculations show that, for direction of propagation
along the I'-X; symmetry axis, at the frequency
=0.2855 (marked in Fig. 9 by a dashed line), the effective
indices of refraction of the two PC slabs are ni=-ny=
—-1.27. As the two PC slabs in the unit supercell have the
same thickness, the average index of refraction at the fre-
quency o is (n)=(nid{+nodg)/ A=0. Therefore, the nearly
complete bandgap seen in Fig. 9, at the frequency @, rep-
resents a zero-n photonic gap. Note that this zero-i pho-
tonic gap is not a complete bandgap because of the small
optical anisotropy of the two PC slabs.

Y

Frequency [wa/2rc=a/A]
o
Y
o<l
Loty

X, M X, r M
Fig. 9. PBS of a superlattice with parameters a,=a, r;/a;=0.4,
d,=33a,, and the background index n=3.6 for the first PC com-
ponent and ay=a/2, ry/ay=0.5, d2=6\f§a2, and background in-
dex n=3.6 for the second PC component. The horizontal line cor-
responds to the frequency at which (n)=0.
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4. CONCLUSIONS

In conclusion, we have demonstrated that a periodic su-
perlattice whose unit supercell contains a PC slab with
negative effective index of refraction and either a homo-
geneous slab of RHM or a PC slab with positive effective
index of refraction has transmission properties that can-
not be achieved by using only RHM-based Bragg photonic
structures. In particular, we have shown that, under cer-
tain conditions that can readily be satisfied in common
experimental setups, the superlattices introduced here
possess a type of photonic gap with unusual and poten-
tially useful properties. This photonic gap opens at fre-
quencies at which the spatial average of the refractive in-
dex of the superlattice vanishes, and therefore, as long as
this condition is satisfied, the gap is insensitive to period-
icity of the structure, angle of incidence onto the struc-
ture, material parameters, and, possibly, structural disor-
der.

We stress that, although our analysis considered only
2D PCs, it can be readily extended to structures that are
easy to fabricate, such as 2D PC slab waveguides. In this
case, one only has to employ the effective index of the
guided modes of the slab waveguide; the rest of the analy-
sis remaining valid. In particular, for slab waveguides
with small refraction index contrast, the reduction of the
3D problem to a 2D one, by using an effective index of re-
fraction, leads to accurate results. Therefore, InP-
GalnAsP-InP or silicon-on-insulator material platforms
can be employed to fabricate the photonic structures dis-
cussed here. Alternatively, it may also be possible to use
metal-based LHMs in a vertical thin-film stack, which is
alternated with a RHM dielectric. The metal-based LHMs
in this case can be conveniently fabricated using inter-
ferometric lithog‘raphyg; in this case, particular care has
to be taken regarding the total optical loss of such a struc-
ture. The availability of such structures would open up
the possibility of investigating their potential use in new
devices such as highly directive sources, wavefront con-
verters, or delay lines with zero phase difference between
the input and the output ports.3>
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